

Hyperspectral Inverse Skinning

Songrun Liu George Mason University
Jianchao Tan George Mason University
Zhigang Deng University of Houston
Yotam Gingold George Mason University
Másợ CraGL
官

Linear Blend Skinning (LBS)

$$
\mathbf{v}^{\prime}=\sum_{j \in H} w_{j}(\mathbf{v}) \mathbf{T}_{j}\binom{\mathbf{v}}{1}
$$

Linear Blend Skinning (LBS)

Linear Blend Skinning (LBS)

Linear Blend Skinning (LBS)

Linear Blend Skinning (LBS)

Inverse Linear Blend Skinning

Inverse Linear Blend Skinning

Inverse Linear Blend Skinning

Inverse Linear Blend Skinning

$\min _{w, R, \mathbf{t}, \mathbf{v}} \sum_{p=1}^{\text {\#poses }} \sum_{i=1}^{n}\left\|\mathbf{v}_{p, i}^{\prime}-\sum_{j=1}^{h} w_{i, j} T_{p, j} \mathbf{v}_{i}\right\|^{2}$
subject to:
[James and Twigg 2005]
[Schaefer and Yuksel 2007]
[De Aguiar et al. 2008]
[Hasler et al. 2010]
$w_{i, j} \geq 0 \quad$ and $\quad \sum_{j=1}^{h} w_{i, j}=1$
[Kavan et al. 2010]
[Le and Deng 2012, 2013, 2014]

Inverse LBS is a problem in high-dimensions

Inverse LBS is a problem in high-dimensions

- Transformation matrices are affine: \mathbb{R}^{12}

Inverse LBS is a problem in high-dimensions

- Transformation matrices are affine: \mathbb{R}^{12}
- Handles have transformations across all animation frames or poses: $\mathbb{R}^{12 p}$

Inverse LBS is a problem in high-dimensions

- Transformation matrices are affine: \mathbb{R}^{12}
- Handles have transformations across all animation frames or poses: $\mathbb{R}^{12 p}$

Inverse LBS is a problem in high-dimensions

- Transformation matrices are affine: \mathbb{R}^{12}
- Handles have transformations across all animation frames or poses: $\mathbb{R}^{12 p}$

Inverse LBS is a problem in high-dimensions

- Transformation matrices are affine: \mathbb{R}^{12}
- Handles have transformations across all animation frames or poses: $\mathbb{R}^{12 p}$
- LBS takes weighted averages of these transformations
$\bigcirc T_{4}$

$\bigcirc T_{2}$

Inverse LBS is a problem in high-dimensions

- Transformation matrices are affine: \mathbb{R}^{12}
- Handles have transformations across all animation frames or poses: $\mathbb{R}^{12 p}$
- LBS takes weighted averages of these transformations

Inverse LBS is a problem in high-dimensions

- Transformation matrices are affine: \mathbb{R}^{12}
- Handles have transformations across all animation frames or poses: $\mathbb{R}^{12 p}$
- LBS takes weighted averages of these transformations
- The handles form a simplex

Inverse LBS is a problem in high-dimensions

- Transformation matrices are affine: \mathbb{R}^{12}
- Handles have transformations across all animation frames or poses: $\mathbb{R}^{12 p}$
- LBS takes weighted averages of these transformations
- The handles form a simplex

Inverse LBS is a problem in high-dimensions

- Transformation matrices are affine: \mathbb{R}^{12}
- Handles have transformations across all animation frames or poses: $\mathbb{R}^{12 p}$
- LBS takes weighted averages of these transformations
- The handles form a simplex
- Vertex transformations are inside

Inverse LBS is a problem in high-dimensions

- Transformation matrices are affine: \mathbb{R}^{12}
- Handles have transformations across all animation frames or poses: $\mathbb{R}^{12 p}$
- LBS takes weighted averages of these transformations
- The handles form a simplex
- Vertex transformations are inside
- Weights are barycentric coordinates

Our Approach

Our Approach

- Step 1: Estimate vertex transformations in $\mathbb{R}^{12 p}$

Our Approach

- Step 1: Estimate vertex transformations in $\mathbb{R}^{12 p}$
- Step 2: Estimate a \#handles-dimensional subspace for the vertices

Our Approach

- Step 1: Estimate vertex transformations in $\mathbb{R}^{12 p}$
- Step 2: Estimate a \#handles-dimensional subspace for the vertices

Our Approach

- Step 1: Estimate vertex transformations in $\mathbb{R}^{12 p}$
- Step 2: Estimate a \#handles-dimensional subspace for the vertices
- Step 3: Find the smallest enclosing simplex

Our Approach

- Step 1: Estimate vertex transformations in $\mathbb{R}^{12 p}$
- Step 2: Estimate a \#handles-dimensional subspace for the vertices

Step 1: Estimate vertex positions in $\mathbb{R}^{12 p}$

- For each pose, we know the vertex's rest and deformed position. This constrains possible handle transformations to an affine subspace or flat in $\mathbb{R}^{9 p}$

Flats...

* In 2D or 3D, lines or planes (respectively) almost always intersect. That's because they have dimension one less than the ambient space. In general, flats don't intersect, just like lines rarely intersect in 3D. * columns of B span directions parallel to the flat, z is the vector of parameters, p is a point on the flat
the columns of F are points in the flat, the parameters w sum to 1
the rows of A are orthogonal directions to the flat

Flats...

- ... generalize a line or plane (a linear subspace offset from the origin) to higher dimensions

Flats...

- ... generalize a line or plane (a linear subspace offset from the origin) to higher dimensions
- ... can be defined explicitly: $\mathscr{L}=\{\mathbf{p}+B \mathbf{z}\}$

Flats...

- ... generalize a line or plane (a linear subspace offset from the origin) to higher dimensions
- ... can be defined explicitly: $\mathscr{L}=\{\mathbf{p}+B \mathbf{z}\}$
- ... can be defined as weighted average: $\mathscr{L}=\{F \mathbf{w}\}$

Flats...

- ... generalize a line or plane (a linear subspace offset from the origin) to higher dimensions
- ... can be defined explicitly: $\mathscr{L}=\{\mathbf{p}+B \mathbf{z}\}$
- ... can be defined as weighted average: $\mathscr{L}=\{F \mathbf{w}\}$
- ... can be defined implicitly: $\mathscr{L}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{a}\right\}$

Step 2: Estimate a handle subspace close to the vertices

- We want a (\#handles-1)-dimensional flat that intersects or is as close as possible to all individual vertices' flats.

The Closest Flat Problem is Hard

The Closest Flat Problem is Hard

- It's not convex. How hard is it?

The Closest Flat Problem is Hard

- It's not convex. How hard is it?
- Generate random 3D lines that intersect a known line. Can we recover the known line from a random initial guess?

The Closest Flat Problem is Hard

- It's not convex. How hard is it?
- Generate random 3D lines that intersect a known line. Can we recover the known line from a random initial guess?
- In 3D, the closest line to a set of lines.

The Closest Flat Problem is Hard

- It's not convex. How hard is it?
- Generate random 3D lines that intersect a known line. Can we recover the known line from a random initial guess?
- In 3D, the closest line to a set of lines.
- Closest line optimization as seen from a camera looking along the ground truth line: (the ground truth line looks like a point at the origin)

The Closest Flat Problem is Hard

- It's not convex. How hard is it?
- Generate random 3D lines that intersect a known line. Can we recover the known line from a random initial guess?
- In 3D, the closest line to a set of lines.
- Closest line optimization as seen from a camera looking along the ground truth line: (the ground truth line looks like a point at the origin)

The Closest Flat Problem is Hard

- It's not convex. How hard is it?
- Generate random 3D lines that intersect a known line. Can we recover the known line from a random initial guess?
- In 3D, the closest line to a set of lines.
- Closest line optimization as seen from a camera looking along the ground truth line: (the ground truth line looks like a point at the origin)
- Success!

The Closest Flat Problem is Hard

The Closest Flat Problem is Hard

- An experiment in \mathbb{R}^{24}

The Closest Flat Problem is Hard

- An experiment in \mathbb{R}^{24}
- Generate random d-dimensional flats that intersect a known k-dimensional flat. Can we recover the k-dimensional flat from a random initial guess?

The Closest Flat Problem is Hard

- An experiment in \mathbb{R}^{24}
- Generate random d-dimensional flats that intersect a known k-dimensional flat. Can we recover the k-dimensional flat from a random initial guess?

The Closest Flat Problem is Hard

- An experiment in \mathbb{R}^{24}
- Generate random d-dimensional flats that intersect a known k-dimensional flat. Can we recover the k-dimensional flat from a random initial guess?
- When $d=0$, the given flats are points. It's a simple least squares problem

The Closest Flat Problem is Hard

- An experiment in \mathbb{R}^{24}
- Generate random d-dimensional flats that intersect a known k-dimensional flat. Can we recover the k-dimensional flat from a random initial guess?
- When $d=0$, the given flats are points. It's a simple least squares problem
- When $d+k \geq 24$, it's trivial. A random initial guess almost surely intersects all flats.

The Closest Flat Problem is Hard

- An experiment in \mathbb{R}^{24}
- Generate random d-dimensional flats that intersect a known k-dimensional flat. Can we recover the k-dimensional flat from a random initial guess?
- When $d=0$, the given flats are points. It's a simple least squares problem
- When $d+k \geq 24$, it's trivial. A random initial guess almost surely intersects all flats.
- When $d+k<24$, there is a difficult zone as $d+k$ approach 24 .

The Closest Flat Problem is Hard

The Closest Flat Problem is Hard

- Tried many possibilities
- direct gradient and Hessian-based optimization for an explicit representation of the flat
- optimization on the Graff manifold
- gradient-based optimization of projection matrices
- global optimization via basin hopping
- Karcher mean
- alternating optimization strategies

The Closest Flat Problem is Hard

- Tried many possibilities
- direct gradient and Hessian-based optimization for an explicit representation of the flat
- optimization on the Graff manifold
- gradient-based optimization of projection matrices
- global optimization via basin hopping
- Karcher mean
- alternating optimization strategies
- See our Appendix "How Not to Minimize Flat/Flat Distances"

Minimizing Flat/Flat Distance: Initial Guess

Minimizing Flat/Flat Distance: Initial Guess

- Find an $\mathbb{R}^{12 p}$ point \mathbf{x}_{i} for each vertex

Minimizing Flat/Flat Distance: Initial Guess

- Find an $\mathbb{R}^{12 p}$ point \mathbf{x}_{i} for each vertex
- If the vertex \mathbf{v}_{i} and its one-ring move rigidly, there is a unique solution. If not, there is a least-squares solution..

Minimizing Flat/Flat Distance: Initial Guess

- Find an $\mathbb{R}^{12 p}$ point \mathbf{x}_{i} for each vertex
- If the vertex \mathbf{v}_{i} and its one-ring move rigidly, there is a unique solution. If not, there is a least-squares solution.
- ...measuring error in $\mathbb{R}^{12 p}$:

$$
\mathbf{x}_{i}=\underset{\mathbf{x}}{\operatorname{argmin}} \sum_{j \in\{i\} \mathrm{UN}(i)}\left\|\frac{1}{\left\|\mathbf{v}_{j}\right\|^{2}} \overline{\bar{j}}_{j}^{\top} \bar{V}_{j}\left(\mathbf{x}-\mathbf{t}_{j}\right)\right\|^{2}
$$

Minimizing Flat/Flat Distance: Initial Guess

- Find an $\mathbb{R}^{12 p}$ point \mathbf{x}_{i} for each vertex
- If the vertex \mathbf{v}_{i} and its one-ring move rigidly, there is a unique solution. If not, there is a least-squares solution.
- ...measuring error in $\mathbb{R}^{12 p}$:

$$
\mathbf{x}_{i}=\underset{\mathbf{x}}{\operatorname{argmin}} \sum_{j \in\{i\} \cup \mathcal{N}(i)}\left\|\frac{1}{\left\|\mathbf{v}_{j}\right\|^{2}} \bar{V}_{j}^{\top} \bar{V}_{j}\left(\mathbf{x}-\mathbf{t}_{j}\right)\right\|^{2}
$$

- ...measuring error in 3D:

$$
\mathbf{x}_{i}=\underset{\mathbf{x}}{\operatorname{argmin}} \sum_{j \in\{i\} \cup \mathcal{N}(i)}\left\|\bar{V}_{j} \mathbf{x}-\mathbf{v}_{j}^{\prime}\right\|^{2}
$$

Minimizing Flat/Flat Distance: Initial Guess

- Find an $\mathbb{R}^{12 p}$ point \mathbf{x}_{i} for each vertex
- If the vertex \mathbf{v}_{i} and its one-ring move rigidly, there is a unique solution. If not, there is a least-squares solution.
- ...measuring error in $\mathbb{R}^{12 p:}$

$$
\mathbf{x}_{i}=\underset{\mathbf{x}}{\operatorname{argmin}} \sum_{j \in\{i\} \cup \mathcal{N}(i)}\left\|\frac{1}{\left\|\mathbf{v}_{j}\right\|^{2}} \bar{V}_{j}^{\top} \bar{V}_{j}\left(\mathbf{x}-\mathbf{t}_{j}\right)\right\|^{2}
$$

- ...measuring error in 3D:

$$
\mathbf{x}_{i}=\underset{\mathbf{x}}{\operatorname{argmin}} \sum_{j \in\{i\} \cup \mathcal{N}(i)}\left\|\bar{V}_{j} \mathbf{x}-\mathbf{v}_{j}^{\prime}\right\|^{2}
$$

- PCA on the 12p-dimensional points gives us an initial guess for the flat.

Minimizing Flat/Flat Distance: Optimization

- We use an explicit expression for a flat: $\min _{F} \sum_{i}\left\|\bar{V}_{i} F \mathbf{w}_{i}-\mathbf{v}_{i}^{\prime}\right\|^{2}$

$$
\text { subject to: } \sum \mathbf{w}_{i}=1
$$

Minimizing Flat/Flat Distance: Optimization

- We use an explicit expression for a flat: $\min _{F} \sum_{i}\left\|\bar{V}_{i} F \mathbf{w}_{i}-\mathbf{v}_{i}^{\prime}\right\|^{2}$

$$
\text { subject to: } \sum \mathbf{w}_{i}=1
$$

- Quadratic in $\mathrm{F}_{1} \mathrm{w}_{\mathrm{i}}$, and even \bar{V}_{i}.

Minimizing Flat/Flat Distance: Optimization

- We use an explicit expression for a flat: $\min _{F} \sum_{i}\left\|\bar{V}_{i} F \mathbf{w}_{i}-\mathbf{v}_{i}^{\prime}\right\|^{2}$

$$
\text { subject to: } \sum \mathbf{w}_{i}=1
$$

- Quadratic in $\mathrm{F}, \mathrm{w}_{\mathrm{i}}$, and even \bar{V}_{i}
- Alternates between local and global steps:

Minimizing Flat/Flat Distance: Optimization

- We use an explicit expression for a flat: $\min _{F} \sum_{i}\left\|\bar{V}_{i} F \mathbf{w}_{i}-\mathbf{v}_{i}^{\prime}\right\|^{2}$

$$
\text { subject to: } \sum \mathbf{w}_{i}=1
$$

- Quadratic in $\mathrm{F}, \mathrm{w}_{\mathrm{i}}$, and even \bar{V}_{i}.
- Alternates between local and global steps:
- Local steps: \mathbf{w}_{i} are independent

Minimizing Flat/Flat Distance: Optimization

- We use an explicit expression for a flat: $\min _{F} \sum_{i}\left\|\bar{V}_{i} F \mathbf{w}_{i}-\mathbf{v}_{i}^{\prime}\right\|^{2}$

$$
\text { subject to: } \sum \mathbf{w}_{i}=1
$$

- Quadratic in $\mathrm{F}, \mathrm{w}_{\mathrm{i}}$, and even \bar{V}_{i}.
- Alternates between local and global steps:
- Local steps: \mathbf{w}_{i} are independent
- Global step: minimizing F entails solving a linear matrix equation: $\sum\left(I_{3 . \# \text { poses }} \otimes\left(\mathbf{v}_{i} \mathbf{v}_{i}^{\top}\right)\right) F\left(\mathbf{w}_{i} \mathbf{w}_{i}^{\top}\right)=-\sum \bar{V}_{i} \mathbf{v}_{i}^{\top} \mathbf{w}_{i}$

Minimizing Flat/Flat Distance: Optimization

- We use an explicit expression for a flat: $\min _{F} \sum_{i}\left\|\bar{V}_{i} F \mathbf{w}_{i}-\mathbf{v}_{i}^{\prime}\right\|^{2}$

$$
\text { subject to: } \sum \mathbf{w}_{i}=1
$$

- Quadratic in $\mathrm{F}, \mathrm{w}_{\mathrm{i}}$, and even \bar{V}_{i}.
- Alternates between local and global steps:
- Local steps: \mathbf{w}_{i} are independent
- Global step: minimizing F entails solving a linear matrix equation: $\sum\left(I_{3 . \# \text { poses }} \otimes\left(\mathbf{v}_{i} \mathbf{v}_{i}^{\top}\right)\right) F\left(\mathbf{w}_{i} \mathbf{w}_{i}^{\top}\right)=-\sum \bar{V}_{i} \mathbf{v}_{i}^{\top} \mathbf{w}_{i}$
- This reduces to a $4 h \times 4 h$ system of equations

Minimizing Flat/Flat Distance: Optimization

- Let's visualize optimization steps.
- A cylinder with 4 handles. The handle simplex is a tetrahedron. The handle flat is 3D. Let's visualize the closest points on the flat to the cylinder vertices.

Minimizing Flat/Flat Distance: Optimization

Minimizing Flat/Flat Distance: Optimization

- A cylinder with 4 handles

Minimizing Flat/Flat Distance: Optimization

- A cylinder with 4 handles
\Rightarrow The handle simplex is a tetrahedron

Minimizing Flat/Flat Distance: Optimization

- A cylinder with 4 handles
\Rightarrow The handle simplex is a tetrahedron
\Rightarrow The handle flat is 3D

Minimizing Flat/Flat Distance: Optimization

- A cylinder with 4 handles
\Rightarrow The handle simplex is a tetrahedron
\Rightarrow The handle flat is 3D
- Visualizing vertex transformations $\in \mathbb{R}^{12 p}$
as points projected onto the handle flat:

Minimizing Flat/Flat Distance: Optimization

- A cylinder with 4 handles \Rightarrow The handle simplex is a tetrahedron \Rightarrow The handle flat is 3D
- Visualizing vertex transformations $\in \mathbb{R}^{12 p}$ as points projected onto the handle flat:

Optimization from our initial guess (slow motion, converges in ~ 10 iterations)

Minimizing Flat/Flat Distance: Optimization

- A cylinder with 4 handles
\Rightarrow The handle simplex is a tetrahedron
\Rightarrow The handle flat is 3D
- Visualizing vertex transformations $\in \mathbb{R}^{12 p}$ as points projected onto the handle flat:

Optimization from our initial guess (slow motion, converges in ~ 10 iterations)

Minimizing Flat/Flat Distance: Optimization

- A cylinder with 4 handles
\Rightarrow The handle simplex is a tetrahedron
\Rightarrow The handle flat is 3D
- Visualizing vertex transformations $\in \mathbb{R}^{12 p}$ as points projected onto the handle flat:

Optimization from a random initial guess ($>10,000$ iterations)

Minimizing Flat/Flat Distance: Optimization

- A cylinder with 4 handles
\Rightarrow The handle simplex is a tetrahedron
\Rightarrow The handle flat is 3D
- Visualizing vertex transformations $\in \mathbb{R}^{12 p}$ as points projected onto the handle flat:

Optimization from a random initial guess ($>10,000$ iterations)

Minimizing Flat/Flat Distance: Optimization

Our Approach

- Step 1: Estimate vertex transformations in $\mathbb{R}^{12 p}$
- Step 2: Estimate a \#handles-dimensional subspace for the vertices

Our Approach

- Step 1: Estimate vertex transformations in $\mathbb{R}^{12 p}$
- Step 2: Estimate a \#handles-dimensional subspace for the vertices

Hyperspectral Image Unmixing

Hyperspectral Image Unmixing

- Satellites capture high dimensional data from far away

Hyperspectral Image Unmixing

- Satellites capture high dimensional data from far away
- Pixels contain mixtures of objects

Hyperspectral Image Unmixing

- Satellites capture high dimensional data from far away
- Pixels contain mixtures of objects
- What are the objects (endmembers)?

Hyperspectral Image Unmixing

- Satellites capture highdimensional data from far away
- Pixels contain mixtures of objects
- What are the objects (endmembers)?
- What mixture is in a pixel (abundances)?

Minimum Volume Enclosing Simplex (MVES)

[Craig 1994]

- Given points in high dimensions, perform PCA and then find the MVES

Minimum Volume Enclosing Simplex (MVES)

[Craig 1994]

- Given points in high dimensions, perform PCA and then find the MVES

Minimum Volume Enclosing Simplex (MVES)

[Craig 1994]

- Given points in high dimensions, perform PCA and then find the MVES

Minimum Volume Enclosing Simplex (MVES)

[Craig 1994]

- Given points in high dimensions, perform PCA and then find the MVES
- State of the art: [Chan et al. 2009, Bioucas-Dias 2009, Ambikapathi et al. 2010, Agathos et al. 2014, Lin et al. 2016]

Minimum Volume Enclosing Simplex (MVES)

[Craig 1994]

- Given points in high dimensions, perform PCA and then find the MVES
- State of the art: [Chan et al. 2009, Bioucas-Dias 2009, Ambikapathi et al. 2010, Agathos et al. 2014, Lin et al. 2016]
- In theory, should be difficult [Hendrix et al. 2013] but works well in papers

Minimum Volume Enclosing Simplex (MVES)

[Craig 1994]

- Given points in high dimensions, perform PCA and then find the MVES
- State of the art: [Chan et al. 2009, Bioucas-Dias 2009, Ambikapathi et al. 2010, Agathos et al. 2014, Lin et al. 2016]
- In theory, should be difficult [Hendrix et al. 2013] but works well in papers
- In theory, gets easier the higher the dimension [Lin et al. 2015, Fu et al. 2015]

Minimum Volume Enclosing Simplex (MVES)

[Craig 1994]

- Given points in high dimensions, perform PCA and then find the MVES
- State of the art: [Chan et al. 2009, Bioucas-Dias 2009, Ambikapathi et al. 2010, Agathos et al. 2014, Lin et al. 2016]
- In theory, should be difficult [Hendrix et al. 2013] but works well in papers
- In theory, gets easier the higher the dimension [Lin et al. 2015, Fu et al. 2015]
- Related to non-negative matrix factorization [Arora et al. 2012]

Minimum Volume Enclosing Simplex (MVES)

- Formally: $\quad \min _{C}|\operatorname{det}(C)|$
subject to:

$$
\begin{aligned}
& C^{-1} D\geq 0 \quad \quad \quad \text { (weights } \geq 0) \\
& C_{h, i}=1, \quad \forall i \in[1, h] \quad \text { (homogeneous coordinates) }
\end{aligned}
$$

Minimum Volume Enclosing Simplex (MVES)

- Formally: $\quad \min (-\log \operatorname{det}(X))$
subject to:

$$
\begin{aligned}
X D & \geq 0 \quad(\text { weights } \geq 0) \\
X \mathbf{1}_{h} & =[0,0,0, \ldots, 1]^{T}(\text { homogeneous coordinates })
\end{aligned}
$$

Minimum Volume Enclosing Simplex (MVES)

- Formally: $\quad \min (-\log \operatorname{det}(X))$
subject to:

$$
\begin{aligned}
X D & \geq 0 \quad(\text { weights } \geq 0) \\
X \mathbf{1}_{h} & =[0,0,0, \ldots, 1]^{T}(\text { homogeneous coordinates })
\end{aligned}
$$

- We use a recent sequential quadratic programming approach [Agathos et al. 2014]

Results

Comparison to SSDR [Le and Deng 2012]

Comparison to Kavan et al. [2010]

Dataset	\# vertices	\# poses	\# bones	Approx. error $E_{R M S}$		Execution time (minutes)	
				Kavan et al.	Ours		Kavan et al.
crane	10002	175	40	1.4	0.73	0.36	2.66
elasticCow	2904	204	18	3.6	3.23	0.08	1.16
elephant	42321	48	25	1.4	0.46	0.37	3.49
horse	8431	48	30	1.3	0.35	0.07	0.67
samba	9971	175	30	1.5	0.86	0.26	2.1

Comparison to Kavan et al. [2010]

Dataset	\# vertices	\# poses	\# bones	Approx. error $E_{R M S}$		Execution time (minutes)	
				Kavan et al.	Ours	Kavan et al.	Ours
crane	10002	175	40	1.4	0.73	0.36	2.66
elasticCow	2904	204	18	3.6	3.23	0.08	1.16
elephant	42321	48	25	1.4	0.46	0.37	3.49
horse	8431	48	30	1.3	0.35	0.07	0.67
samba	9971	175	30	1.5	0.86	0.26	2.1

Recovering Ground Truth

Our approach recovers ground truth for simple cases

- Always recovers vertex positions (perhaps with different handle transformations and weights)
- Given true per-vertex transformations, MVES recovers true handles and weights

Mesh Animation Compression

Mesh Animation Compression

Mesh Animation Compression

- Measured in bits per vertex per frame (bpfv)

Mesh Animation Compression

- Measured in bits per vertex per frame (bpfv)
- Weights are a one-time per-vertex cost
- $32 h$ bits per vertex (h floats/vertex • 32 bits/float)

Mesh Animation Compression

- Measured in bits per vertex per frame (bpfv)
- Weights are a one-time per-vertex cost
- 32 h bits per vertex (h floats/vertex • 32 bits/float)
- Each frame: one affine matrix per handle, shared by all vertices
- bpfv $=12 \mathrm{~h} / \# v e r t i c e s ~ \cdot ~ 32 ~ b i t s ~$ (12 floats/handle $\cdot 32$ bits/float amortized over all vertices)
- very low incremental cost per frame

Mesh Animation Compression

- Measured in bits per vertex per frame (bpfv)
- Weights are a one-time per-vertex cost
- 32 h bits per vertex (h floats/vertex • 32 bits/float)
- Each frame: one affine matrix per handle, shared by all vertices
- bpfv $=12 \mathrm{~h} / \# v e r t i c e s ~ \cdot ~ 32 ~ b i t s ~$ (12 floats/handle $\cdot 32$ bits/float amortized over all vertices)
- very low incremental cost per frame
- $4.6 \times$ lower error than state of the art [Luo et al. 2019]

Conclusion

- Inverse Skinning is a problem in high-dimensional geometry
- Simple expression
- Benefits from improvements in Hyperspectral Image Unmixing
- Benefits from improvements to the closest flat problem

Conclusion

- Inverse Skinning is a problem in high-dimensional geometry
- Simple expression
- Benefits from improvements in Hyperspectral Image Unmixing
- Benefits from improvements to the closest flat problem
- Limitations
- Transformations aren't rigid. They makes them less useful when editing
- No sparsity. Sometimes LBS weights aren't sparse, but this is often desirable
- We don't recover a bone skeleton [Le and Deng 2014]

Thank You

- Code and data: https://cragl.cs.gmu.edu/hyperskinning/
- Acknowledgements:
- Harry Gingold, Alec Jacobson, Shahar Kovalsky, Arthur Dupre, Jie Gao, and Leonard Schulman for informative discussions
- Kyle Falicov for help with rendering
- Guoliang Luo for running his algorithm on our data
- Financial support
- US NSF (IIS-1524782 \& IIS-1453018)
- Google
- Adobe

