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This presentation is about Linear Blend Skinning. LBS is an animation technique. We choose a set of handles H, such as the bones of a character. The handles are chosen by the designer to be convenient for whatever deformation they want to perform.
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Linear Blend Skinning (LBS)
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Each handle has a pointwise per-vertex weight. These weights are fixed for the entire animation. Different vertices have different weights.
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The designer adjusts the transformation matrix associated with each handle, and the shape moves.

LBS is standard in many parts of computer graphics, particularly for real-time animation.
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Inverse Linear Blend Skinning
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In this work, we consider the inverse problem. Given an animation, what should the handles and weights be?

<click> Formally, we can express this in a least squares sense.

<click> We’re not the first ones to look at this problem, but we have a fresh approach.
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Previous Work:

 [James and Twigg 2005]


 [Schaefer and Yuksel 2007]


 [De Aguiar et al. 2008]


 [Hasler et al. 2010]


 [Kavan et al. 2010]


 [Le and Deng 2012, 2013, 2014]
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Our observation is that …

… 
Weights sum to 1 and are non-negative
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Inverse LBS is a problem in high-dimensions
• Transformation matrices are affine: ℝ12

• Handles have transformations across all animation frames or poses: ℝ12p

• LBS takes weighted averages of these transformations
• The handles form a simplex

• Vertex transformations are inside

• Weights are barycentric coordinates
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Our Approach
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The LBS reconstruction error is entirely determined by the flat-flat distance. Any enclosing simplex has the same error. Smaller simplex means sparser weights.


? We don't need to worry about points on the handle flat. We will find them in Step 2.
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Step 1: Estimate vertex positions in ℝ12p

• For each pose, we know the vertex’s rest and deformed position. This 
constrains possible handle transformations to an affine subspace or flat in ℝ9p

8



Flats…
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* In 2D or 3D, lines or planes (respectively) almost always intersect. That’s because they have dimension one less than the ambient space. In general, flats don’t intersect, just like lines rarely intersect in 3D.

* columns of B span directions parallel to the flat, z is the vector of parameters, p is a point on the flat

* the columns of F are points in the flat, the parameters w sum to 1

* the rows of A are orthogonal directions to the flat
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Flats…

• … generalize a line or plane (a linear subspace offset from the origin) to higher 
dimensions

• … can be defined explicitly: ℒ = {p + Bz}
• … can be defined as weighted average: ℒ = {Fw}
• … can be defined implicitly: ℒ = {x ∈ ℝn | Ax = a}
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Step 2: Estimate a handle subspace close to 
the vertices

• We want a (#handles-1)-dimensional flat that intersects or is as close as 
possible to all individual vertices' flats.

10
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If there’s a handle flat that intersects all vertex flats, then there’s a zero-error solution to inverse skinning. Minimizing the distance minimizes the error.
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The Closest Flat Problem is Hard

• It’s not convex. How hard is it?
• Generate random 3D lines that intersect a known line. Can we recover the 

known line from a random initial guess?
• In 3D, the closest line to a set of lines.

• Closest line optimization as seen from a 
camera looking along the ground truth line: 
(the ground truth line looks like a point at the 
origin)

• Success!
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The Closest Flat Problem is Hard
• An experiment in ℝ24

• Generate random d-dimensional flats that intersect a known k-dimensional flat. 
Can we recover the k-dimensional flat from a random initial guess?

• When d=0, the given flats are points. It’s a simple least squares problem

• When d+k≥24, it’s trivial. A random initial guess almost surely intersects all flats.

• When d+k<24, there is a difficult zone as d+k approach 24.

12

log10 Solution Error # Iterations (max 200)
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an explicit representation of the flat


• optimization on the Graff manifold
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• Karcher mean


• alternating optimization strategies
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• gradient-based optimization of projection matrices
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• See our Appendix “How Not to Minimize 
Flat/Flat Distances”
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Table 7: The error resulting from various initial guess schemes
followed by 10 iterations of our bi-quadratic flat optimization (Sec-
tion 4.2) compared with ground truth. In this experiment, we keep
the 50% of per-vertex initial guesses with lowest position error.

Model
Transformation Errors / Vertex Errors ERMS without

Unconstrained approaches Constrained approaches initial guess
One-ring Euclidian Geodesic One-ring Euclidian Geodesic

cylinder 0.01 / 0.88 0.21 / 13.52 0.52 / 18.42 0.01 / 1.48 0.2 / 12.91 0.58 / 20.1 0.45 / 31.29

cube 0.10 / 6.12 0.11 / 6.59 0.28 / 10.76 0.11 / 5.97 0.09 / 7.96 0.34 / 9.52 0.2 / 15.51

cheburashka 0.02 / 0.92 0.04 / 0.83 1.02 / 1.59 0.02 / 0.83 0.03 / 0.91 0.99 / 2.15 0.1 / 1.22

wolf 0.2 / 1e-8 1.12 / 6.7e-8 2.19 / 1.3e-4 0.2 / 6.7e-9 2.11 / 1.1e-6 0.58 / 2.7e-5 0.32 / 5e-10

cow 0.42 / 0.2 5.53 / 0.27 10.92 / 0.98 0.27 / 0.22 1.46 / 0.31 18.57 / 1.76 1.63 / 0.74

tion 4.2). In this experiment, we perform PCA on the the 50% of per-
vertex initial guesses with lowest position error. The unconstrained
one-ring neighborhood outperformed the other strategies. As a re-
sult of our experiments, and owing to its simplicity and run-time
performance, we use the one-ring neighborhood with unconstrained
3D error (8) for our results.

Appendix C: How Not to Minimize Flat/Flat Distances

We seek to minimize the sum of squared flat/flat distances (Eq. 6)
given an initial guess Lguess. This minimization can be expressed in
numerous ways. See Figure 5 for a comparison where relevant.

Direct optimization (p,B) We directly optimize Equation 6 using
the BFGS algorithm [NW06]. This never achieves the low error of
our proposed bi-quadratic approach. We also experimented with
a combination of these two approaches, where we improve the bi-
quadratic solution with direct optimization or switch approaches
every 10 iterations. These combinations were inferior to simply
running the bi-quadratic approach for additional iterations.

Optimization on an appropriate manifold (p,B manifold) We
optimize Equation 6 with a various algorithms (gradient descent,
conjugate gradient, and trust region) on the space of Rn ⇥Gr(h�
1,Rn) [EAS98, TKW16]. The gradient descent and conjugate gra-
dient algorithms are slower to compute and achieve higher error
per iteration than our proposed bi-quadratic approach. The Hessian-
based trust region algorithm is much slower to compute, taking hours
to execute 20 iterations. However, on our simplest example, a cylin-
der with four bones, the trust region algorithm achieves superlinear
convergence and the known ground truth solution (Figure 5).

Global optimization We employed basin hopping [WD97], which
is a stochastic global minimization algorithm in which random
modifications of the current state are optimized via continuous op-
timization. We used our proposed approach (Section 4.2) for the
continuous optimization. Basin hopping failed to improve upon the
error of our proposed approach alone. The random modifications
did not find basins with lower error. This approach is not plotted
in Figure 5, because the curve would cover that of our proposed
bi-quadratic approach.

Karcher Mean We experimented with computing the Riemannian
center of mass or Karcher mean of the given flats. The Karcher mean
was proposed in the literature [CHV17, MRBD⇤14] as an effective
technique for finding the centroid to a set of points on a Riemannian
manifold. We experimented with representing flats as points on (a)

the product manifold Rn ⇥Gr(h�1,Rn) or (b) the Graff manifold
identified with points on the higher-dimensional Grassmann man-
ifold (Appendix A). In our setting, the unknown flat has different
dimension than the given flats; in this case, the additional principal
angles needed for the geodesic distance computation are taken as p

2 .
Unfortunately, this approach does not find a flat with small distance
to other flats. We believe that this is due to the distortion of distances
on the product or Graff manifolds.

Iterative PCA (IPCA) We optimize Equation 6 with a different
alternating decomposition than our proposed bi-quadratic approach.
Instead, we alternate between (a) solving for the closest point on
each vertex’s flat to the handle flat L and then (b) solving for the
flat that minimizes the squared distance to these closest points. Step
(a) can be solved via

argmin
x

(x�p)>Pnull(x�p) (18)

subject to:

V̄ix = v0i (19)

where Pnull = I3·#poses � B(B>B)�1B> = I3·#poses � BB† is the
orthogonal projector onto the null-space of the handle flat (Ap-
pendix A) and B† is the Moore-Penrose pseudo-inverse of B. This
requires solving a different (3 · #poses)⇥ (3 · #poses) system of
equations for each vertex, with the constraint implemented either
via Lagrange multipliers or as a least squares soft constraint. Step
(b) can be solved by principal component analysis (PCA), taking
the first h�1 principal components as the parallel directions for the
handle flat and the center as the point through which the handle flat
passes.

This iterative PCA (IPCA) approach produces better results than
all other techniques except for our bi-quadratic approach (and
the very expensive Hessian-based trust region approach). Our bi-
quadratic approach alternates between (a) solving for the closest
point on the handle flat L to each vertex’s flat (in terms of handle flat
parameters wi) and (b) solving for a new handle basis matrix F that
minimizes the distance to the vertex flats using the wi parameters.
Our bi-quadratic approach is faster to compute, as it only requires
the solution to a single, smaller 4h⇥4h system of equations.

Iterative Laplacian re-weighting Any point on a d-dimensional
flat can be represented as the weighted average of d + 1 or more
affine independent points. In our setting, this implies that the fol-
lowing energy for per-vertex transformation matrices ti 2 R12·#poses

should be zero:

Elocal = Â
i
kti � Â

j2N (i)
wi jt jk2 (20)

where N (i) are the neighbors of vertex i and wi j are scalar weights
that sum to one. Elocal can be expressed as Elocal = Âi kLt̄k2, where
L is a 12 ·#pose ·#vertices laplacian matrix and t̄ is a column vector
containing all vertices’ transformation matrices across all poses. We
experimented with two definitions of vertex neighbors: the one-ring;
and a fixed, random set of 2h vertices. To reproduce the observed
poses, we wish to minimize:

Edata = Â
i
kV̄iti �v0ik2 (21)

c� 2020 The Author(s)
Computer Graphics Forum c� 2020 The Eurographics Association and John Wiley & Sons Ltd.
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We optimize the sum of the two terms. The expression Elocal +Edata
is quadratic in either wi j or ti, so we alternate between solving for
one while fixing the other. When solving for wi j, Edata is constant
and can be ignored, resulting in a small, typically underdetermined,
local system per-vertex that can be solved in a least-square sense.
Solving for ti, however, amounts to solving a very large, sparse
system of equations. Finally, we take the first h�1 principal com-
ponents of the final ti to be the handle flat.

Because of the very large system of equations, this approach
executes much more slowly than our proposed bi-quadratic approach
and produces solutions with more error per iteration.

Orthogonal Projector The minimal distance between flats (Equa-
tion 5) can be written kC(x0�y0)k, where x0 is any point on one flat
and y0 is any point on the other flat and C is the projection matrix
onto the intersection of the two flats’ orthogonal spaces [DK92]. For
our problem, this results in the expression:

Â
i
kCi(p� ti)k2 = p>

 

Â
i

Ci

!
p+

 

Â
i

t>i Citi

!
�2p>

 

Â
i

Citi

!

(22)

where the ti are any valid transformation matrix in vertex i’s flat
(Equation 7). The projection matrix Ci can be written (via the
Anderson-Duffin formula) as Ci = 2PV̄i

(PV̄i
+PB)

†PB, where PB and
PV̄i

are orthogonal projectors onto the column-space of B and the
row-space of V̄i, respectively. This approach is unstable and tends to
increase error from a good initial guess.

Equation 22 is minimized (by setting the derivative with respect
to p to 0) when p = (Âi Ci)

�1 (Âi Citi). Substituting this expression
for p results in:

min
B

 

Â
i

t>i Citi

!
�
 

Â
i

Citi

!> 

Â
i

Ci

!�1 

Â
i

Citi

!
(23)

This expression is numerically unstable, because Ci is rank deficient.
This rank deficiency corresponds to the fact that p can be any point
on a flat. Even with a pseudoinverse, the expression is unstable.

c� 2020 The Author(s)
Computer Graphics Forum c� 2020 The Eurographics Association and John Wiley & Sons Ltd.
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• Find an ℝ12p point xi for each vertex
• If the vertex vi and its one-ring move rigidly, there is a unique solution. If 

not, there is a least-squares solution…
• …measuring error in ℝ12p: 

 
 

• …measuring error in 3D: 
 
 

• PCA on the 12p-dimensional points gives us an initial guess for the flat.
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• We use an explicit expression for a flat: 
 
 

• Quadratic in F, wᵢ, and even .V̄i
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• Local steps:  are independentwi

• Global step: minimizing  entails solving a linear matrix equation: F

∑
i

(I3⋅#poses ⊗ (viv⊤
i )) F (wiw⊤

i ) = − ∑
i

V̄iv′￼⊤
i wi

• This reduces to a 4h×4h system of equations
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Minimizing Flat/Flat Distance: Optimization

• Let’s visualize optimization steps.

• A cylinder with 4 handles. The handle simplex is a tetrahedron. The handle flat 

is 3D. Let’s visualize the closest points on the flat to the cylinder vertices.
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The orientation is arbitrary, so we minimize unnecessary rotation via a Procrustes transformation.
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• Visualizing vertex transformations ∈ ℝ12p 
as points projected onto the handle flat:
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Minimizing Flat/Flat Distance: Optimization
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Proposed initial guess 1 iteration 5 iterations 10 iterations 20 iterations ground truth

1 iteration 5 iterations 10 iterations 20 iterations 1000 iterationsRandom initial guess

Here they are side-by-side



Our Approach
• Step 1: Estimate vertex transformations in ℝ12p

• Step 2: Estimate a #handles-dimensional subspace for the vertices

• Step 3: Find the smallest enclosing simplex

21

... P poses

T1,1

T1,2

T1,P

T2,1

T2,2
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T4,1

T4,2

T4,P
ℝ12p

Optimization gave us a flat. We project all vertices into this flat. The error should be small. The LBS reconstruction error is entirely determined by this projection distance.

<click> All that’s left is finding handles which enclose the projected vertices. This is the minimum volume enclosing simplex problem from Hyperspectral Imaging! Any enclosing simplex has the same error. Smaller simplex means sparser weights.
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Hyperspectral Image Unmixing

22

[European Union, Copernicus Sentinel-2 imagery]

end members are our handles. abundances are our weights.
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Hyperspectral Image Unmixing

• Satellites capture high-
dimensional data from 
far away

• Pixels contain mixtures 
of objects

• What are the objects 
(endmembers)?

• What mixture is in a pixel 
(abundances)?

22

[European Union, Copernicus Sentinel-2 imagery]
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Minimum Volume Enclosing Simplex (MVES) 
[Craig 1994]

• Given points in high dimensions, perform PCA and then find the MVES
• State of the art: [Chan et al. 2009, Bioucas-Dias 2009, Ambikapathi et al. 2010, 

Agathos et al. 2014, Lin et al. 2016]

• In theory, should be difficult [Hendrix et al. 2013] but works well in papers
• In theory, gets easier the higher the dimension [Lin et al. 2015, Fu et al. 2015]

• Related to non-negative matrix factorization [Arora et al. 2012]
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• Formally:

Minimum Volume Enclosing Simplex (MVES)
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CD

…

(homogeneous coordinates)

(weights ≥ 0)



• Formally: 
 
 
 
 
 
 
 

Minimum Volume Enclosing Simplex (MVES)

25

C=X-1D

…

(homogeneous coordinates)

(weights ≥ 0)

This version is equivalent but avoids inverses and numerical blow-up. We follow a recent approach.



• Formally: 
 
 
 
 
 
 
 

• We use a recent 
sequential quadratic 
programming approach 
[Agathos et al. 2014]

Minimum Volume Enclosing Simplex (MVES)

25

C=X-1D

…

(homogeneous coordinates)

(weights ≥ 0)



Results

Let’s see some results



Comparison to SSDR [Le and Deng 2012]
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Our approach is faster and has lower error compared to the SSDR (Smooth Skinning Decomposition with Rigid Bones) technique of Le and Deng.
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Input Ours SSDR

Here is a close-up. We use flat-shading to emphasize the surface quality.
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Comparison to SSDR [Le and Deng 2012]
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Here is another example. The horse behaves very non-rigidly.



Comparison to SSDR [Le and Deng 2012]
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Comparison to SSDR [Le and Deng 2012]
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Input Ours SSDR

This example is particularly challenging for SSDR, since SSDR maintains transformation rigidity.
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Input Ours SSDR
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Input Ours SSDR



Comparison to Kavan et al. [2010]
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Compared to Kavan et al [2010], our approach has lower error. Our approach doesn’t consider sparsity, which is sometimes a requirement.



Comparison to Kavan et al. [2010]
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Kavan et al’s approach is highly optimized and takes advantage of their sparsity assumption.



Recovering Ground Truth

• Our approach recovers ground truth 
for simple cases
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Recovering Ground Truth

• Our approach recovers ground truth 
for simple cases


• Always recovers vertex positions 
(perhaps with different handle 
transformations and weights)


• Given true per-vertex 
transformations, MVES recovers true 
handles and weights

34

Ground Truth Estimated Bones and Weights
(per-vertex transformations

from ground truth)

Estimated Bones and Weights
(per-vertex transformations

estimated via flat optimization)EverythingGround Truth MVES (Step 3)

Given a known LBS rig



Mesh Animation Compression
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For a given bpfv, our approach has 4.6× lower error
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Mesh Animation Compression

• Measured in bits per vertex per frame (bpfv)
• Weights are a one-time per-vertex cost


• 32h bits per vertex (h floats/vertex ⋅ 32 bits/float)

• Each frame: one affine matrix per handle, 
shared by all vertices


• bpfv = 12h/#vertices ⋅ 32 bits 
(12 floats/handle ⋅ 32 bits/float amortized over all vertices)


• very low incremental cost per frame

• 4.6× lower error than state of the art [Luo et al. 2019]
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Conclusion
• Inverse Skinning is a problem in high-dimensional geometry


• Simple expression


• Benefits from improvements in Hyperspectral Image Unmixing


• Benefits from improvements to the closest flat problem
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Conclusion
• Inverse Skinning is a problem in high-dimensional geometry


• Simple expression


• Benefits from improvements in Hyperspectral Image Unmixing


• Benefits from improvements to the closest flat problem

• Limitations

• Transformations aren’t rigid. They makes them less useful when editing.


• No sparsity. Sometimes LBS weights aren’t sparse, but this is often desirable.


• We don’t recover a bone skeleton [Le and Deng 2014]
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Thank You

• Code and data: https://cragl.cs.gmu.edu/hyperskinning/
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