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Linear Blend Skinning (LBS)

This presentation is about Linear Blend Skinning. LBS is an animation technique. We choose a set of handles H, such as the bones of a character. The handles are chosen by the designer to be convenient for whatever deformation they want to perform.
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Linear Blend Skinning (LBS)

Each handle has a pointwise per-vertex weight. These weights are fixed for the entire animation. Different vertices have different weights.



Linear Blend Skinning (LBS)

The designer adjusts the transformation matrix associated with each handle, and the shape moves.
LBS is standard in many parts of computer graphics, particularly for real-time animation.
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Inverse Linear Blend Skinning

In this work, we consider the inverse problem. Given an animation, what should the handles and weights be?
<click> Formally, we can express this in a least squares sense.
<click> We’re not the first ones to look at this problem, but we have a fresh approach.
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Inverse Linear Blend Skinning
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Our observation is that ...

Weights sum to 1 and are non-negative

Inverse LBS is a problem in high-dimensions
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Inverse LBS is a problem in high-dimensions

Transformation matrices are affine: R12
Handles have transformations across all animation frames or poses: R'2p
LBS takes weighted averages of these transformations

The handles form a simplex

e \ertex transformations are inside

e \Weights are barycentric coordinates

Ri2p




Our Approach

The LBS reconstruction error is entirely determined by the flat-flat distance. Any enclosing simplex has the same error. Smaller simplex means sparser weights.

? We don't need to worry about points on the handle flat. We will find them in Step 2.
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e Step 1: Estimate vertex transformations in R'2p
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Our Approach

e Step 1: Estimate vertex transformations in R12p

* Step 2: Estimate a #handles-dimensional subspace for the vertices




Step 1: Estimate vertex positions in R12p

* For each pose, we know the vertex’s rest and deformed position. This
constrains possible handle transformations to an affine subspace or flat in R%
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Flats...

1D flat £

I o

AN .
2D orthogonal space A .*

*In 2D or 3D, lines or planes (respectively) almost always intersect. That’s because they have dimension one less than the ambient space. In general, flats don’t intersect, just like lines rarely intersect in 3D.
* columns of B span directions parallel to the flat, z is the vector of parameters, p is a point on the flat

* the columns of F are points in the flat, the parameters w sum to 1

* the rows of A are orthogonal directions to the flat



Flats...

e ... generalize a line or plane (a linear subspace offset from the origin) to higher

dimensions
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Flats...

e ... generalize a line or plane (a linear subspace offset from the origin) to higher
dimensions

e ... can be defined explicitly: & = {p + Bz}
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Flats...

e ... generalize a line or plane (a linear subspace offset from the origin) to higher

dimensions

e ... can be defined explicitly: & = {p + Bz}

e ... can be defined as weighted average: & = {Fw}
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Flats...

... generalize a line or plane (a linear subspace offset from the origin) to higher
dimensions

... can be defined explicitly: & = {p + Bz}
... can be defined as weighted average: & = {Fw}
... can be defined implicitly: & = {x € R" | Ax = a}




Step 2: Estimate a handle subspace close to
the vertices

e We want a (#handles-1)-dimensional flat that intersects or is as close as
possible to all individual vertices' flats.

Vertex i’s neighborhood Vertex j’s neighborhood
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Handle transformation flat Vertex flats

If there’s a handle flat that intersects all vertex flats, then there’s a zero-error solution to inverse skinning. Minimizing the distance minimizes the error.




TODO: Cube edges

The Closest Flat Problem is Hard
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e |t's not convex. How hard is it?

e Generate random 3D lines that intersect a known line. Can we recover the
known line from a random initial guess?
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e |t's not convex. How hard is it?

e Generate random 3D lines that intersect a known line. Can we recover the
known line from a random initial guess?

¢ |In 3D, the closest line to a set of lines. \ \\\ \
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The Closest Flat Problem is Hard

e |t's not convex. How hard is it?

e Generate random 3D lines that intersect a known line. Can we recover the
known line from a random initial guess?

camera looking along the ground truth line:

e In 3D, the closest line to a set of lines. \\\\ ///////
¢ Closest line optimization as seen from a i,
§ ) 7225
\

e Success!
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* An experiment in R24

e Generate random d-dimensional flats that intersect a known k-dimensional flat.
Can we recover the k-dimensional flat from a random initial guess?




given flats dimension d

The Closest Flat Problem is Hard

* An experiment in R24

e Generate random d-dimensional flats that intersect a known k-dimensional flat.

Can we recover the k-dimensional flat from a random initial guess?

logio Solution Error
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given flats dimension d

The Closest Flat Problem is Hard

* An experiment in R24

* Generate random d-dimensional flats that intersect a known k-dimensional flat.
Can we recover the k-dimensional flat from a random initial guess?

* When d=0, the given flats are points. It's a simple least squares problem
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given flats dimension d

The Closest Flat Problem is Hard

An experiment in R24

e Generate random d-dimensional flats that intersect a known k-dimensional flat.
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Can we recover the k-dimensional flat from a random initial guess?
* When d=0, the given flats are points. It's a simple least squares problem

e When d+k>24, it's trivial. A random initial guess almost surely intersects all flats.
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given flats dimension d

The Closest Flat Problem is Hard

An experiment in R24

e Generate random d-dimensional flats that intersect a known k-dimensional flat.
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Can we recover the k-dimensional flat from a random initial guess?
* When d=0, the given flats are points. It's a simple least squares problem
e When d+k>24, it's trivial. A random initial guess almost surely intersects all flats.

* When d+k<24, there is a difficult zone as d+k approach 24.
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TODO: Cube edges

The Closest Flat Problem is Hard




The Closest Flat Problem is Hard

¢ Tried many possibilities

direct gradient and Hessian-based optimization for
an explicit representation of the flat

optimization on the Graff manifold

gradient-based optimization of projection matrices
global optimization via basin hopping

Karcher mean

alternating optimization strategies




The Closest Flat Problem is Hard

¢ Tried many possibilities

direct gradient and Hessian-based optimization for
an explicit representation of the flat

optimization on the Graff manifold

gradient-based optimization of projection matrices
global optimization via basin hopping

Karcher mean

alternating optimization strategies

* See our Appendix “How Not to Minimize

Flat/Flat Distances”
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Minimizing Flat/Flat Distance: Initial Guess

* Find an R'2?r point x; for each vertex

e If the vertex v; and its one-ring move rigidly, there is a unique solution. If
not, there is a least-squares solution...

¢ ...measuring error in R12p:

2
. | R
X; = argmin ) WVJ Vi(x—t;)
X je{iYUN() J
¢ ...measuring error in 3D:
x;=argmin Y |[|[Vx—V] 12

X je{iyuN()

e PCA on the 12p-dimensional points gives us an initial guess for the flat.
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. ¥ 1112
* We use an explicit expression for a flat: H}%l’lz HV,FWl —V; H
i

subject to: Z w,=1

 Quadratic in F, w;, and even V..
¢ Alternates between local and global steps:

e Local steps: w; are independent
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Minimizing Flat/Flat Distance: Optimization

. ¥ 1112
* We use an explicit expression for a flat: IIII%I’IZ HV,FW, —V; H
i

subject to: Z w,=1

 Quadratic in F, w;, and even V..
¢ Alternates between local and global steps:
e Local steps: w; are independent

e Global step: minimizing F entails solving a linear matrix equation:

Z (13~#poses ® (ViViT)> F(wwl) =~ Z Viviiw;

1
e This reduces to a 4hx4h system of equations




Minimizing Flat/Flat Distance: Optimization

* Let's visualize optimization steps.

* A cylinder with 4 handles. The handle simplex is a tetrahedron. The handle flat
is 3D. Let’s visualize the closest points on the flat to the cylinder vertices.

i P poses

& &>

The orientation is arbitrary, so we minimize unnecessary rotation via a Procrustes transformation.
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¢ A cylinder with 4 handles
= The handle simplex is a tetrahedron
= The handle flat is 3D

]
e Visualizing vertex transformations € R12p )
as points projected onto the handle flat: = e T
. ._-.“.-_ .
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Optimization from our initial guess

(slow motion, converges in ~10 iterations)

The orientation is arbitrary, so we minimize unnecessary rotation via a Procrustes transformation.
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Minimizing Flat/Flat Distance: Optimization

¢ A cylinder with 4 handles
= The handle simplex is a tetrahedron
= The handle flat is 3D

e Visualizing vertex transformations € R2p o ..,E‘
. . o e -nﬁll ".'.'
as points projected onto the handle flat: LY od bt

Optimization from a random initial guess
(>10,000 iterations)

The orientation is arbitrary, so we minimize unnecessary rotation via a Procrustes transformation.




Minimizing Flat/Flat Distance: Optimization

¢ A cylinder with 4 handles
= The handle simplex is a tetrahedron
= The handle flat is 3D

e Visualizing vertex transformations € R2p o ..,::
as points projected onto the handle flat: .:":‘F"“L .

Optimization from a random initial guess
(>10,000 iterations)




Minimizing Flat/Flat Distance: Optimization

Proposed initial guess 1 iteration 5 iterations 10 iterations 20 iterations ground truth
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10 iterations 20 iterations

Random initial guess 1 iteration

Here they are side-by-side



Our Approach

e Step 1: Estimate vertex transformations in R'2p

* Step 2: Estimate a #handles-dimensional subspace for the vertices

Ri2p

Optimization gave us a flat. We project all vertices into this flat. The error should be small. The LBS reconstruction error is entirely determined by this projection distance.
<click> All that’s left is finding handles which enclose the projected vertices. This is the minimum volume enclosing simplex problem from Hyperspectral Imaging! Any enclosing simplex has the same error. Smaller simplex means sparser weights.



Our Approach

¢ Step 3: Find the smallest enclosing simplex




Hyperspectral Image Unmixing

[European Union, Copernicus Sentinel-2 imagery]
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end members are our handles. abundances are our weights.
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Hyperspectral Image Unmixing

Satellites capture high-
dimensional data from
far away

Pixels contain mixtures
of objects

What are the objects
(endmembers)?

What mixture is in a pixel
(abundances)?

[European Union, Copernicus Sentinel-2 imagery]
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Minimum Volume Enclosing Simplex (MVES)
[Craig 1994]

* Given points in high dimensions, perform PCA and then find the MVES
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Minimum Volume Enclosing Simplex (MVES)
[Craig 1994]

* Given points in high dimensions, perform PCA and then find the MVES

e State of the art: [Chan et al. 2009, Bioucas-Dias 2009, Ambikapathi et al. 2010,
Agathos et al. 2014, Lin et al. 2016]

* In theory, should be difficult but works well in papers
* In theory, gets easier the higher the dimension

e Related to non-negative matrix factorization [Arora et al. 2012]

convex hull
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Minimum Volume Enclosing Simplex (MVES)

e Formally: mén| det(C)|
subject to:

c'p >0 (weights = 0)

Cri=1, Vi € [1,h] (homogeneous coordinates)
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Minimum Volume Enclosing Simplex (MVES)

e Formally: min(— logdet(X))
subject to:
XD >0 (weights = 0)

X1, =10,0,0,..., I]T (homogeneous coordinates)

25

This version is equivalent but avoids inverses and numerical blow-up. We follow a recent approach.




Minimum Volume Enclosing Simplex (MVES)

e Formally: min(—logdet(X))
subject to:

XD >0 (weights = 0)

X1, =10,0,0,..., l]T (homogeneous coordinates)

* We use arecent
sequential quadratic

programming approach
[Agathos et al. 2014]
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Let’s see some results

Results




Comparison to SSDR |ic and Deng 2012]

Ground Truth
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Our approach is faster and has lower error compared to the SSDR (Smooth Skinning Decomposition with Rigid Bones) technique of Le and Deng.




Comparison to SSDR |ic and Deng 2012]

— Ground Truth

SSD (20 bones)




COmparison to SSDR [Le and Deng 2012]
Input Ours SSDR

Here is a close-up. We use flat-shading to emphasize the surface quality.
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Here is another example. The horse behaves very non-rigidly.

Comparison to SSDR |ic and Deng 2012]

Ground Truth

SSD (20 bones)
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Comparison to SSDR |ic and Deng 2012]

Ground Truth

SSD (20 bones)
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Comparison to SSDR [Le and Deng 2012]
Input Ours SSDR
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This example is particularly challenging for SSDR, since SSDR maintains transformation rigidity.



Comparison to SSDR [Le and Deng 2012]
Input Ours SSDR
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Comparison to Kavan et al. [2010]

Approx. error Egyss

Execution time (minutes)

Dataset # vertices # poses  # bones

Kavanetal. Ours | Kavan et al. Ours
crane 10002 175 40 1.4 0.73 0.36 2.66
elasticCow 2904 204 18 3.6 3.23 0.08 1.16
elephant 42321 48 25 1.4 0.46 0.37 3.49
horse 8431 48 30 1.3 0.35 0.07 0.67
samba 9971 175 30 1.5 0.86 0.26 2.1

31

Compared to Kavan et al [2010], our approach has lower error. Our approach doesn’t consider sparsity, which is sometimes a requirement.




Comparison to Kavan et al. [2010]

Dataset #vertices #poses  # bones Approx. error Egys | Execution time (minutes)
Kavanetal. Ours |Kavan et al. Ours
crane 10002 175 40 14 0.73 0.36 2.66
elasticCow 2904 204 18 3.6 323 0.08 1.16
elephant 42321 48 25 1.4 0.46 0.37 3.49
horse 8431 48 30 1.3 0.35 0.07 0.67
samba 9971 175 30 1.5 0.86 0.26 2.1

Kavan et al’s approach is highly optimized and takes advantage of their sparsity assumption.



Recovering Ground Truth

Ground Truth
® Our approach recovers ground truth p
for simple cases

Everything

-
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Recovering Ground Truth

Ground Truth

® Our approach recovers ground truth
for simple cases

¢ Always recovers vertex positions
(perhaps with different handle
transformations and weights)

Everything
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Given a known LBS rig

Recovering Ground Truth
Ground Truth  MVES (Step 3)

® Our approach recovers ground truth
for simple cases

¢ Always recovers vertex positions
(perhaps with different handle
transformations and weights)

* Given true per-vertex
transformations, MVES recovers true
handles and weights

Everything
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Mesh Animation Compression

For a given bpfv, our approach has 4.6x lower error



Mesh Animation Compression
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Mesh Animation Compression

Measured in bits per vertex per frame (bpfv)

Weights are a one-time per-vertex cost

* 32h bits per vertex (h floats/vertex - 32 bits/float)

Each frame: one affine matrix per handle,
shared by all vertices

* bpfv = 12h/#vertices - 32 bits

(12 floats/handle - 32 bits/float amortized over all vertices)

very low incremental cost per frame

Ours (30 bones)

Ours (40 bones)




Mesh Animation Compression

Ours (30 bones)

* Measured in bits per vertex per frame (bpfv)
* Weights are a one-time per-vertex cost
* 32h bits per vertex (h floats/vertex - 32 bits/float)
e Each frame: one affine matrix per handle,
shared by all vertices
* bpfv = 12h/#vertices - 32 bits

(12 floats/handle - 32 bits/float amortized over all vertices)

Ours (40 bones)

e very low incremental cost per frame

e 4.6X lower error than state of the art [Luo et al. 2019]
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Conclusion

¢ Inverse Skinning is a problem in high-dimensional geometry
* Simple expression
* Benefits from improvements in Hyperspectral Image Unmixing

* Benefits from improvements to the closest flat problem

i P poses
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Conclusion

¢ Inverse Skinning is a problem in high-dimensional geometry
* Simple expression
* Benefits from improvements in Hyperspectral Image Unmixing
* Benefits from improvements to the closest flat problem
* Limitations
e Transformations aren't rigid. They makes them less useful when editing.
* No sparsity. Sometimes LBS weights aren’t sparse, but this is often desirable.

e We don't recover a bone skeleton [Le and Deng 2014]

[RW/Og
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Thank You

¢ Code and data: https://cragl.cs.gmu.edu/hyperskinning/
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